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Abstract:  
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1. Introduction 

The creation and management of intellectual property rights (IPRs) on the results of academic 

research is nowadays a major policy issue. University patenting has attracted most of the attention, as 

a result of the impressive growth of patents granted to academic institutions in the US since the 

approval of the Bayh-Dole Act in 1980, and the related increase of university revenues coming from 

patent licensing (Mowery et al., 2004; AUTM, 2003). While no other developed country has 

experienced a similar university patent explosion, the US example has been impressive enough to 

generate a wave of policy measures in all countries, aimed at increasing university-industry 

technology transfer and promoting the creation of clear-cut IPRs over the results of public funded 

research (OECD, 2003).  

Evaluating this policy trend requires a better understanding of two distinct issues. First, it is not yet 

entirely clear whether pushing the faculty to patent the results of their research lead to a genuine 

increase in the technology transfer efforts, or to a diversion from basic science to more applied 

targets1. In order to shed light on the existence of a possible trade-off between basic research and 

technology transfer, one needs to investigate the effects of patenting on the academic researchers� 

core activity, namely the publication of scientific papers on refereed journals. 

Second, more information on European countries have to be gathered, in order to avoid that the sheer 

imitation of the US experience will clash against the institutional specificities of different countries. 

To date, only the above mentioned OECD report has collected some cross-section data for a few 

European countries, but they are limited to one year of observation, and to patents owned directly by 

universities and public labs2. For countries such as Germany, where for long IPRs over academic 

research results were assigned to professors, these statistics may be deceptive. Besides, in the 

absence of a strong tradition of universities� involvement in IPR matters, it is most likely that 

researchers receiving at least partial funding from business companies will leave all the IPRs over 

their research to those companies. Therefore, assessing the contribution of academia to business-

owned patents helps evaluating the extent of university-industry transfer links already in place. 

Finally, longitudinal data are required to evaluate trends. 

                                                        
1 By �genuine technology transfer effort� we mean here an additional research effort aimed at developing promising 
inventions already obtained, as �proofs of concept� or �prototypes�, by curiosity-driven, or basic research (that is, 
�normal� academic science). US legislators passing the Bayh-Dole Act aimed precisely at creating the right system of 
incentives to solicit that effort, under the presumption that a lack of it was undermining the more general goal of 
promoting innovation by funding science (Jensen and Thursby, 2001). The same presumption seems nowadays to 
underline the EU policy-makers who believe in the existence of a �European Paradox�, that is of a strong European 
science base, not coupled to effective technology transfer means (Dosi, Llerena and Sylos-Labini, 2005). 
2 Similar data for the case of Finland have been collected by Meyer (2003) and Meyer et al. (2003). For  the case of 
Belgium, see also Saragossi and van Pottelsberghe (2003). 
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This paper belongs to a series of two aimed at to these two research issues for the Italian case. It is 

based upon a dataset containing all the patent applications from Italian academic inventors addressed 

to the European Patent Office, from 1978 to 1999; and on a dataset on publications authored by those 

academic inventors and a matched sample of academic scientists with no patents in their CV. In 

particular, we aim at checking whether more productive scientists are more or less prone to 

patenting, and whether the orientation towards basic research is at odds with or favours patenting. 

We are also interested in understanding whether the relationship between publishing and patenting 

varies across disciplines, and between university-owned and business-owned patents; and whether 

research co-operation with industry is a pre-requisite for patenting. 

By applying event history (survival) analysis to our data, we reach the conclusion that more 

productive scientists are more likely to become academic inventors, to no detriment of their 

orientation towards basic research. Research co-operation with industry is a useful predictor of 

patenting only when IPRs are owned by business companies. Environmental factors, such as the 

presence of other academic inventors in the department, help explaining the propensity to patent.  

In section 2 we discuss the existing literature on the academic patenting and its relationship to 

scientific research and publishing. In section 3 we present our data, while in section 4 we report 

results of our analysis. Section 5 concludes. 

2. Patenting and publishing: complementarities and trade-offs 

The relationship between patenting and publishing may be investigated at two different levels, one 

which refers to the dissemination of research results, the other to the research objectives pursued by 

scientists. 

At the dissemination level, one has to explore whether scientific papers and patents are 

complementary or alternative means for the diffusion of research results. Publishing in peer-reviewed 

journals has been for long the chief dissemination channels of scientific research results. Well before 

publication counts started being used as measures of scientific productivity, both for policy 

evaluation and recruitment purposes, scientists circulated their writings both to diffuse their theories 

and discoveries, and get credit for them (Chartier, 2003). The history of  patents is no shorter, and it 

is at least since the XVII century that obtaining a patent over a new technology required disclosing 

the latter�s details (MacLeod, 2002). However, it has been argued that patents are nowadays the 

results of an incentive system at odds with the priority reward system which has governed the 

scientific community since the XVIII century, as described by Merton (1973). Even if both systems 

put a prize on keeping research results secret for a while (until the submission of a scientific paper to 

a journal or conference, or the application for a patent), they have very different disclosure rules and 
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attitudes towards cooperation. The priority reward system encourages scientists to disclose fully their 

research achievements, via the publication of data, intense codification efforts (neat theorizing and 

establishment of clear experimental routines), teaching duties, and repeated interaction/discussion 

with peers (Dasgupta and David, 1994). The IPR-based system, on the contrary, may encourage 

incomplete and selective disclosure. Patent-intensive firms rely heavily on secrecy to appropriate the 

returns from non-patentable knowledge assets, many of which are produced or acquired along the 

development phase of a patented invention (Cohen et al., 2000). As long as secrecy complements 

patenting, academic scientists who are more committed to patent-oriented research may find it 

difficult to publish all of their research results3.  

At a more practical level, commitment to patenting may push academic inventors to delay the 

publication of their research results, since placing them in the public domain before filing for a patent 

would go against the novelty requirement as defined by most patent offices4. 

Both the reduced propensity to publish and the publication delay effects may be stronger for patents 

resulting from industry-sponsored research, especially when the scientists give away the IPRs over 

his research to the sponsor as part of research contract5. 

At the research objectives level, propositions on the relationship between publishing and patenting 

derive from more fundamental visions of the relationship between science and technology. 

A common concern regards the contents of academic enquiry, which could be diverted from �basic� 

towards �applied� research. While the former can be portrayed as the unconstrained exploration of 

nature and theory, the latter�s objectives are limited by the need to achieve results with some degree 

of the �industrial applicability�, a crucial pre-requisite for patent applications to be successful. Lack 

of commitment toward basic research may result either in a lower rate of publications in refereed 

academic journals, or in less ambitious publications, with a lower impact on the progress of both 

science and technology. Although never modelled theoretically, the possible existence of a basic-

applied science trade-off has been a long standing concern of both policy-makers and scientists (Bok, 

2003). 

                                                        
3 More threats to the overall quantity and quality of scientific publications comes from the increasing cost of accessing 
research tools  (Heller and Eisenberg, 1998), or the scientists� bias when testing products and technologies owned by 
their business sponsors (as in clinical tests; Campbell et al., 2002). 
4 In principle, the publication delay may be mitigated by the so-called �grace period� rule, as in the US and Japan. The 
rule allows academic researchers to publish in advance their soon-to-be-patented inventions, as long as the publication 
occurs not too early (6 to 12 months before the patent application date). However, the European Patent Office does not 
allow for any grace period, so that any firm or inventor applying for a US or Japanese patent, but foreseeing to extend it 
to Europe, cannot exploit the rule (Kneller, 2001). 
5 An additional issue relates to patenting of so-called research tools, such as scientific instruments, genetic sequences, and 
other seminal results. Exclusive licensing and fragmented IPR property over these kind of inventions may prevent 
research teams with lesser means from accessing to new research fields, or scare off scientists with fears of infringing 
some hidden patent. On this point, see the classic paper by Heller and Eisenberg (1998), and the more recent empirical 
work by Murray and Stern (2005) and Sampat (2005). 
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Alternatively, it has been proposed that close contacts between academic scientists and industry may 

indeed be beneficial to basic research. The history of science-technology relationships is punctuated 

by close contacts between scientists and industry, which have provided scientists with financial 

resources and free access to expensive scientific instruments, as well as with �focussed� research 

questions, data, and technical expertise. Answers to research questions raised by technology may be 

at the same time economically valuable and scientifically relevant, up to the point of opening up new 

research avenues and disciplines: as far as an academic scientist�s patenting  record is a good proxy 

of the scientist�s involvement with industry at such an high level (rather than mere consultancy) we 

should expect a positive association between patents and publications (both in quantity and quality)6.  

One further argument suggests that R&D-oriented business companies, especially those active in 

science-based technologies, are as responsive as academic institutions to scientists� publications. 

Their R&D staff screen academic publications routinely, publish actively, and participate to 

conferences and workshops, thus joining the academic community, and sharing its judgements on 

individual scientists� reputation (Hicks and Katz, 1996; for a survey: Iversen and Kaloudis,1999). It 

follows that any academic scientists wishing to access the financial and cognitive resources of large 

business companies must not give up its publication activity, but on the contrary must keep it up at 

high levels even before producing a patentable invention 

Under this perspective, we may expect more productive scientists to exhibit both a strong publication 

record and a high propensity to appear as inventors on patent documents (whether or not they retain 

the IPRs over their inventions). At the same time, collaboration with industry may enhance a 

scientist�s productivity. 

In a companion paper, we explore the effects of patenting on academic scientists� subsequent 

publication record (Breschi et al., 2005). Here we do the opposite exercise, and check whether a 

scientist�s publication record may explain her propensity to patent, that is to turn her into an 

�academic inventor�. In particular, we test whether more productive scientists are more or less prone 

to patenting, and whether the orientation towards basic research bears any relationship with 

patenting.  

We test for the influence of previous collaboration with industry, by including among the 

determinants of propensity to patent the number of a scientist�s papers co-authored with industrial 

researchers.  

We are also interested in understanding whether the relationship between publishing and patenting 

varies across disciplines, and between university-owned and business-owned patents. We expect the 

                                                        
6 The classic reference on �cognitive� resources is Rosenberg, 1982, ch. 8. For some recent empirical evidence, see 
Mansfield (1995, 1998) and Siegel et al. (2003) 
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probability to observe a positive relationship between publishing and patenting to be higher in 

scientific fields wherein basic research is more readily exploitable by industry (the classical example 

being Molecular Biology). 

We pursue these research targets by treating patents as discrete events, which may or may not occur 

at any point in a scientist�s career, and may possibly be explained by the scientist�s publication 

record and a number of control variables. By applying a semiparametric survival analysis model, we 

estimate the impact of each publication-based variable on the patenting hazard rate. 

3. Data 

The core data of this paper come from the EP-INV database, which contains all patent applications to 

the European Patent Office (EPO) that designate at least one inventor with an Italian address, from 

1978 to early 1999. The EP-INV database contains information on 30243 inventors and 38868 patent 

applications. 

Little more than 1400 of these applications come from 919 �academic inventors�, namely university 

researchers and professors who appear both as designated inventors in the EP-INV dataset and in the 

complete list of academic staff of science and engineering departments on active duty in year 2000 

(27844 full professors, associate professors, or assistant professor) provided to us by MIUR, the 

Italian Ministry of Education and Research. For a full description of the matching methodology and 

contents of the dataset, see Balconi et al. (2004). 

In this paper we focus on a few disciplines with a very high share of academic inventors over the 

total number of professors. These can be found in fields such as Chemical Engineering (e.g. 

technology of materials, such as macromolecular compounds), Biology, Pharmacology, and 

Electronics (including Telecommunications), for a total of 301 academic inventors and 552 patents 

(table 1). Many patents are the result of teamwork, with academic and non-academic inventors 

working together. As for the distribution of patents over time, 75 of them date back to 1979-1985, 

while the others are quite uniformly distributed over the remaining years. Most of the selected 

inventors are full professors, born between 1940 and 1960 (more details in Breschi et al., 2005). 

 

 

{TABLE 1 HERE} 
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A control sample was then built, by matching each academic inventor to a professor in the same 

discipline, with the same academic ranking, and of a similar age7. Each academic inventor was 

matched to a colleague never designated as inventors of patents applied for either at EPO or the US 

Patent and Trademark Office8. When possible, controls were chosen among the academic inventors� 

department colleagues or from university of similar size and importance, or from the same region. 

We decided not to adopt stricter matching rules at the level of university/department (such as 

choosing controls only from the same departments of the inventors), as they would have greatly 

reduced the sample. For the same reason, we did not match our data on the basis of gender. The rules 

we followed for matching inventors and controls at the university level provide satisfactory results: 

as far as summary statistics of university size are concerned, we do not find systematic differences 

between inventors and controls (see table A2 in the Appendix)9. 

3.1 Patent data 

The distribution of patents across academic inventors is highly skewed; most professors have signed 

only one patent, and very few more than five (table 2). Most patents belong to business companies, 

as a result of contractual funding, with little meaningful differences across fields, with the exception 

of Biology, which records a higher number of both individual and university-owned patents (table 3). 

We cannot be sure that all academic inventors signed their patents when they were already working 

in a university: some patents may be the outcome of former jobs as industrial researchers or 

employees of large public labs. However, we suspect these patents to be very few, as Italian 

professors usually start pursuing the academic career right after graduating.  

 

 

{TABLE 2 HERE} 

 

 

 

                                                        
7 The choice of discipline, rank, and age as matching variables follow the best-established results of quantitative studies 
in the sociology of science (e.g. Long et al., 1993). 
8 For academic inventors born in between 1950 and 1970, we allowed for no more than 5 years of age difference with the 
controls. For professors born before 1950 the maximum age difference was 7 years. For academic inventors born after 
1970 (just one) the maximum age difference reduced to 3 years. Exceptionally (no more than 10 cases) we matched a full 
professor (inventor) with an associate professor (control), or an associate professor with an assistant professor; in these 
cases the age criteria were stricter (maximum age difference: 3 and 5 years, respectively). 
9 On how university and department affiliations may affect scientific productivity, see Allison and Long (1987, 1990). 
The Italian evaluation system of academic activities does not rank systematically universities and departments according 
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As for IPRs over public-funded research, in principle these belong to the sponsors (most often the 

MIUR ministry, the National Research Council, and, in the past, ENEA, the National Agency for 

Alternative Energy). However, until recently, the decision to take the first step towards patenting was 

usually left to individual grant recipients and, if taken, the step was often met with passive 

bureaucratic resistance by the funding institutes. 

 

 

 

{TABLE 3 HERE} 

 

 

A similar explanation applies to the scarcity of patents owned by the universities: until recently, 

universities decided to take care of the application procedure and expenses to reward, often 

symbolically, some brilliant researcher, rather than as the outcome of a consistent exploitation 

strategy. As a result, few patent applications from public-funded research are completed, and even 

less are extended outside the national level (so they do not appear in our dataset). It also happens that 

many professors take the shortcut of patenting in their own names: this explain the presence of a few 

inventors� own patents10. Finally, some �Open Science� patents come from international 

collaborations, and are owned or co-owned by US and European universities or consortia. 

Table A3 in the Appendix lists the most important applicants as well as the ownership concentration 

ratios, by field. More than one third of the patents in the Electronics and Telecom field are in the 

hands of ST Microelectronics, the largest semiconductor company in Italy and one of the very few 

large hi-tech companies in Italy11. As for the other fields, ownership is so sparse that the National 

Research Council (CNR) and the University of Rome, despite holding very few patents, turn out to 

be ranked highly among patent applicants.  

                                                                                                                                                                                          
to the quality of their research. In the absence of better measures, we can measure the university size with the total 
number of professors (in hard science). 
10 Inventors� own patents, however, are less than suggested by table 3. In fact, whenever an �individual� patent results 
from teamwork, all co-inventors figure as co-applicants. 
11 In particular, ST Microelectronics has a long cooperation record with, among others, some researchers from the 
Department of Electronic Engineering of the University of Pavia (Balconi, Borghini and Moisello, 2003). The 
multinational group ENI plays a similar role in Chemical Engineering, although it has not close relationships with a 
single university. 
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It should be noticed that, in a few cases, the CNR and the universities enter table A4 as co-applicants 

along with business companies, as a result of public-funded co-operative research projects. In this 

case we assign the patent to the �business� category. 

3.2 Institutional and personal data  

Most information on individual professors and their institutions come directly from the MIUR list, 

which contains the professors� date of birth, as well as their discipline, affiliation, and academic 

ranking (assistant professor, associate professor, and full professor).  

Disciplines are defined according to a classification created for administrative purposes; it is very 

detailed and allows some compression into broader categories, which are referred to as �fields� (see 

table A1 in the Appendix)12. It is hardly common for a professor to change discipline over his career, 

and when this happens, movements can be safely assume to occur within the same field.  

Affiliation refers to the university employing professors in year 2000. For each university we know 

the size of the scientific faculty (NUNIj: n. of professors in hard sciences in university j in year 

2000); we expect larger university to be better equipped in dealing with technology transfer issues, as 

they may have some administrative staff devoted to manage intellectual property rights. We also 

calculate the weight of the university in a specific field (USSDWj: n. of professors in university j / n. 

of professors in Italy, by field) as well as the weight of the field within the university (SSDUWj: n. of 

professors in a given field in university j / n. of professors in university j, for each field): we consider 

the former as a proxy of the strength or prestige of the professor�s department within his own 

university, and the latter as a proxy of the strength or prestige of the professor�s university in the 

Italian academic system, in the professor�s field. Strenght or prestige may influence the availability 

of research funds, from which the opportunity to invent may follow. 

In the absence of longitudinal data on both the professors� affiliation, and the faculty size of 

universities, we will make use of NUNI, USSDW and SSDUW as control variables throughout our 

analysis, for all years comprised between 1978 and 1999. We justify this use of our data by pointing 

out that academic mobility is a very limited phenomenon in Italy, and it is often confined to the very 

early stages of a professor�s career. As for the absolute size of university faculties, this has increased 

greatly over the years, but the same cannot be said of relative size: public universities in Milan, 

Rome, and a few other large cities have remained the dominant institutions despite all changes. We 

                                                        
12 The MIUR list includes only those professors and researchers with tenured position (from now on, we will refer to 
them simply as �professors�). Thus our data miss fixed-term appointees who, at the time, had been working in one or 
more universities for one or more years, as well as all the PhD students, post-doc fellows, and technicians. In the current 
Italian system, assistant professor (called �researcher�) and associate professor positions, despite being only the first two 
steps of the academic career, are not offered as fixed-term appointments, but as tenured ones. The main differences with 
the position of full professor lie in wage and administrative power. 
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assume our variables to capture effectively the effects on academic patenting of university size 

ranking, and to influence positively the propensity of a professor to sign a patent as inventor. 

Other control variables we obtain from the MIUR list are the AGE and GENDER of professors 

(GENDER equals 1 for women professors).  

By combining our patent data and information on affiliation (in 2000), we have produced two 

additional control variables: SHAREINV, which measures the percentage of inventors among each 

professor�s colleagues (in the same university and field), at each point in time; CUMPATUNI, which 

measures the stock of patents held by each professor�s university at each point in time. We expect 

both of them to influence positively a professor�s propensity to sign a patent as inventor. 

The main drawback of our data is the absence of information on either the graduation year or the 

starting date of our professors� careers. This will force us to make some rules-of-thumb assumptions 

when dealing with the entry date in our longitudinal dataset (see sections 3.3 and section 4 below). 

However, for a subset of 139 academic inventors, additional data are available on their graduation 

year (which allows to set a more precise entry date in our longitudinal dataset) and on whether they 

hold a PhD, and when it was completed (from which we build a PHD dummy which takes value 1 

from the PhD grant year onward). When limiting our analysis to academic inventors we will make 

use of these more precise pieces of information. 

3.3 Publication data 

For academic inventors and their controls we collected scientific publications from the 2003 web 

edition of the ISI Science Citation Index (SCI), starting from articles published in 1975. 

For each professor we compute the average number of publications (AVG_PUB) at each point in 

time, as the stock of publications divided by the years of activity. We expect AVG_PUB to influence 

positively the academic researchers� propensity to patent, at least in those fields where science leads 

more directly to invention. 

Calculating the number of years of activity requires setting a starting date for a professor�s career. In 

the absence of information on either the graduation year or the first year as assistant professor, we set 

the starting date as the minimum between the 30th birth-year and the first year of publication activity. 

This choice will possibly lead to overestimating the publication activity of professors with no papers 

in the early stages of their career, as those years may be dropped from our analysis. This possibility 

is most likely to occur for non-inventors, who record a higher number of zero-publication years (see 

figure 1) and appear in general to be less productive than inventors (table 4). As we will find (section 
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4) that AVG_PUB indeed is most often positively related to patenting, we conclude that this 

measurement problem does not undermine our conclusions. 

 

{FIGURE 1 HERE} 

 

 

 

 

{TABLE 4 HERE} 

 

To test for the possibility that patenting occurs as a consequence of an intense research effort, which 

produces jointly publishable and patentable results, we compute DELTA_PUB as the difference 

between the yearly scientific production of a professor, and his current AVG_PUB value. We also 

compute the 1- and 2-lagged values of DELTA_PUB. 

Information on a professor�s research targets (basic vs. applied) come from a reclassification, 

produced by CHI Research, of about 90% ISI-recorded journals (Hamilton, 2003). Journals are 

assigned a score from 1 to 4 on the basis of their contents and scientific field, with score 1 for the 

most applied kind of research and score 4 for the most basic13. We calculate AVG_BASIC and 

DELTA_BASIC  as the equivalents of AVG_PUB and DELTA_PUB for the journals with score 3 

and 4.  

Finally, in order to assess the extent of pre-existing research co-operation between academic 

researchers and industry, we have calculated S_COPAT: for each in point in time, it represents the 

share of cumulated publications co-authored by each professor with industrial researchers affiliated 

to companies with at least one EPO patent application (not just Italian ones, but worldwide). 

Information on the affiliation of professors� co-authors come again from ISI-Web of Science, while 

                                                        
13 The classification distinguishes between biomedical fields and all the other disciplines. In the first case, the scores 

correspond to the following definitions of the journals� contents: 
 l = "clinical observation" (eg. Journal of the American Medical Association) 
 2 = "clinical observation and investigation" (eg New England J. of Medicine) 
 3 = "clinical investigation" (eg Journal of Clinical Investigation) 
 4 = "basic biomedical research" (eg Journal of Biological Chemistry) 
In the second case the correspondence is: 
 l = "applied technology" (eg Dyes and Pigments) 
 2 = "engineering science -technological science" (Journal of AOAC International) 
 3 = "applied research -targeted basic research" (Analytical Chemistry) 
 4 = "basic scientific research" (J. of the American Chemical Society) 
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information on worldwide patent applications to EPO come from the K4I dataset on EPO patents 

(K4I, 2005). 

4. Analysis  

In order to explore the relationship between publication activity and patenting, we estimate the 

patenting hazard rate of our subjects, that is the probability that a professor will patent in the current 

year, conditional upon her not having patented so far (the time unit is the year).  

As we do not have any a priori hypothesis on the functional form of the hazard function, we choose 

to apply Cox semiparametric approach, which does not impose any parametric specification on the 

baseline hazard function (that is, on the relationship between time and the probability of the event to 

occur; Kalbfleisch and Prentice, 2002). This means adopting a proportional hazard model such as: 

)exp()()|( 0 iiii xthxth β=  

where h(ti|xi) is the hazard rate at time t for professor i, conditional upon a set of covariates xi, which 

include both time-invariant characteristics of the professor (such as GENDER) and time-varying 

ones (such as all variable related to the number of publications). 

We first estimate the hazard function for a single patenting event, that is we choose professors as the 

subjects of our exercise and let them in our sample at the latest between the starting year of their 

career14 and 1978 (the opening year of the EPO, European Patent Office); academic inventors exit 

the sample when they sign their first patent. In other words, we assume professors to be at risk of 

patenting only from the opening of EPO in 1978, or from when they start their career (if later); and 

not be anymore at risk once they sign their first patent. Time �at risk� runs from the entry in the 

sample15.  

 
 

 

{TABLE 5 HERE} 

 
 
 
 
                                                        
14 For our definition of �start� of a professor�s career see section 3.3 above 
15 This means that we assume no left truncation in our data, as 1978 is the earliest possible entry year for all our 
professors, no matter whether they started their career before then. In other words, we disregard all patents taken at 
national offices before the opening of EPO as a relevant event for our analysis (none of our professors signed any US 
patent before 1978). We justify this treatment of our data by observing that very few professors have more than one 
patent, so the risk of ignoring some previous patenting activity is low; and that the equivalent of a EPO patent before 
1978 should be not just any national patent, but a patent extended to all the most important EPO countries, which makes 
the risk of ignoring it even smaller. 
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We then proceed to check whether our results hold for repeated patenting events. In this case, the 

professors enter our sample first in 1978 (or when they start their career, if later) and never exit, as 

they are always at risk of patenting; however, after any patent the time �at risk� re-starts from 1, as 

we assume each patenting event to be distinct from the previous one. Technically, this means 

assuming that any professor with n>1 patents will enter our analysis as (n+1) distinct subjects, each 

observed from time 1 onward. As we expect the recurrence times of all events concerning the same 

professor to be highly correlated (that is, they not to be independent observations), we allow for 

professor-specific random effects (frailty model; Lancaster, 1979). In other words, we assume the 

hazard function for all mi observations referred to professor i to be: 

)exp()(),|( 0 ijijiiijij xthxth βαα =      with j=1�mi 

where αi is a parameter common to all observations. As we do not have any a priori on the 

probability density function of α i , we simply adopt the Gamma specification built in STATA, the 

software package we used for our analysis. Estimates of the hazard function under the assumption of 

a Gamma-distributed frailty parameter include an estimate of the distribution variance (θ), upon 

which all standard errors of the parameters for the covariates are conditional. The �frailty� 

assumption, that is the assumption of random effects at the professor level, is not rejected as long as  

θ ≠ 0. 

We finally check our results for a sample limited to the academic inventors only, for a number of 

which we know both when they  started their academic career and whether they hold a PhD. 

Table 6 reports our estimates for the coefficients of the single-event hazard function. Equation (1) 

suggests a positive association between patenting and publishing at two levels: first, professors who 

experience an above-average publishing activity in year  t-1 are more at risk of patenting the 

following year; second, more productive professors are more at risk of patenting. 

The first relationship derives from the positive and significant coefficient of DELTA_PUBt-1, which 

implies that the hazard rate increases of about 11% with any additional paper published with the 

respect to a professor�s average. It is hard to assign to this estimate a causal interpretation; rather, it 

suggests that patenting and publishing are not alternative activities, and that patenting does not 

impose any significant publication delay to academic inventors. 

The second relationship is suggested by the positive value of the AVG-PUB coefficient, which 

suggests that by adding one paper to a professor�s average productivity we obtain a 12% increase of 

the hazard ratio. 
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One more relationship between publishing and patenting is the result of a �coauthorship� effects. As 

suggested by the coefficient of S_COPAT (which ranges from 0 to 1), a 1% increase in the stock of 

publications co-authored with industrial researchers (whose employers have at least one EPO patent) 

increases the hazard rate of about 4%. This effect may be stronger than it looks at first sight: 

publications are count data, and one or two publications more with industrial co-authors may mean 

much more than a mere 1% increase in S_COPAT (for example, a mere 5% increase in S_COPAT 

means a 19% increase of the hazard rate). 

No age effects are observed, while a limited gender effect is detectable (all other things equal, the 

hazard ratio for women is 8%  less than that of men). As many studies in the sociology of science 

have pointed out a negative gender effect on scientific productivity, what we have here is an 

additional gender effect on the probability of patenting: women may be less likely to patent insofar 

they have a lower publication record (Long at al., 1993), and because they are at a disadvantage in 

patenting the results of their research. 

 

 

{TABLE 6 HERE} 

 

 
At the level of institution, the share of academic inventors over the total number of a professor�s 

department colleagues (SHAREINV), exerts some positive effect on the hazard rate, albeit a very 

limited one (a 50% higher share of academic inventors in the department means only  a 1,5% 

increase of the hazard ratio). No other variable at the institution level is significant. 

None of the field dummies appears significant (pharmaceutical is the reference case). This excludes a 

direct effect of a professor�s scientific field on the hazard rate. However, we tested for some indirect 

effect, by interacting the field dummies with all the publication-related covariates. Neither the 

interactions with DELTA-PUB nor those with AVG_BASIC appear to be significantly different from 

each other.  

On the contrary, scientific fields affect significantly the impact of S_COPAT on the hazard  rate. 

Equation (2) suggests that the highest effect is recorded in the Pharmaceutical field (baseline 

coefficient 3.51) , and the lowest in the Chemical field (where the effect appears to be negative: 3.51-

8.52=-5.1). 
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In equation (3) we check whether our results still hold when considering only the publications on 

journals more oriented to basic science. While the effect of the number of publication at time t-1 

(DELTA_BASICt-1) seems confirmed, the same does not apply to the average number of 

publications (AVG_BASIC). 

 

{TABLE 7 HERE} 

 

In table 7 we run separate regressions for patents owned by Business companies and patents assigned 

to Open Science institutions (such as universities or public consortia16). As for impact of publications 

on the hazard rates, no major differences from table 5 stand out, although the effect on the hazard 

rate of a professor�s publications at time t-1 (DELTA_PUBt-1) may be somewhat smaller for the case 

of Business-owned patents. When only basic science publications are considered no effect of 

DELTA_BASIC t-1 is visible for Business patents. As for the effect of AVG_BASIC, this does not 

appear to be significant for Open Science patents. None of these differences, however, appear to be 

of major importance. 

More strikingly (although not surprisingly), coauthorship with industrial researchers seem to affect 

only the hazard rate for Business patents, with the same sign and possibly higher coefficients than we 

observed for all patents. 

At the same time, the field dummy for Biology appears to be significant for the Open Science 

patents. This reflects the uneven distribution of patents between the Business and Open Science 

category, with the latter hosting a larger proportion of patents by Biology professors. 

An additional dummy variable (POSTPAT) takes value 1 for all inventors, starting on the year of 

their first patent. It controls for the possibility that some inventors with Business patents may also 

patent for an Open Science institution (or vice versa), and that one patenting experience may affect 

the hazard rate for the other one. Its lag of significance reflect the low number (18) of academic 

inventors with both kinds of patents. 

Finally, we observe that a major difference  in the effect of gender, with the disadvantage of women 

totally confined to Business patents. 

In table 8 we check for the robustness of our results by considering multiple events, that is by  

modelling the hazard rate for both the first patents and the following ones. 

                                                        
16 We also add to this category the few patents assigned to individual inventors, as they do not originate from ties with 
industry and are most likely to result from some tacit arrangement between the academic inventor and her university�s 
administration 
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No major difference appear from the previous table. The loss of significance of the Biology field 

dummy  for the Open Science patents may be explained by the limited number of Biology professors 

signing more than one patent, so that when counting all events the distribution of patents across 

fields is less uneven. 

As for the loss of significance of  DELTA_PUBt-1 for Business Patents, this is due to the fact that 

multiple Business patents most often appear at a very short time distance (usually at no more than 1 

or two years of distance), as they are clearly the result of the same research project; exploration of 

the data suggest that in these case no further increases of publication activity occurs after the first 

patent. 

The POSTPAT dummy used in table 7 is here replaced by STOCKPATt-1, that is the number of 

patents signed by the inventor up to t-1. This variable affects only the hazard rate for Open Science 

patents. 

 

 

{TABLE 8 HERE} 

 

 

Finally, table 9 reproduces equation (1) of table 8 only for a subset of 134 academic inventors, whose 

BA and PhD graduation years we recovered through interviews. The exclusion of the non-inventors 

gives much more weight, in the regression, to patenting events beyond the first one.  

The role of AVG_PUB is confirmed, but the time structure of DELTA_PUB looks somehow altered, 

as it is now the coefficient for current publications (DELTA) to affect significantly the hazard rate.  

 

{TABLE 9 HERE} 

 

 

The gender effect disappear, while the field dummies enter the regression in a different way (for ease 

of exposition, Biology is now the reference case). We first notice that both the dummies for 

Electronics and Pharmaceuticals affect directly, as a result of the higher number of multiple patents 

by academic inventors in the two fields. The field variable again interact with S_COPAT, but now it 

coauthorship within the field of Biology that seems to affect most the hazard rate (Chemicals is still 
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the field whether coauthorship matters less). In addition, the field dummies interact with the PhD 

dummy: holding a PhD affects more heavily the hazard rate for Biology professors than for any other 

else. 

 

5. Discussion and conclusions 

The results of the analysis conducted in section 4 suggest that no major trade-off exists between 

patenting and publishing: academic inventors do not publish less than their colleagues with no 

patents, and do not show a bias towards more applied, less basic science. If possible, our results 

indicate the opposite, that is the existence of a positive link, by which more productive professors are 

more likely to end up signing one or more patents. In this respect, our results confirm the results 

obtained by Stephan et al. (2004) for the US case, while are at odds with Agrawal�s and Henderson�s 

(2002) findings in their case study of MIT. 

We also find that professors who register, in a given year, an higher-than-average productivity are 

more likely to patent in the following year, which suggests patents to be most often the by-product of 

a fertile research project. If confirmed, this interpretation may also suggest that professors manage to 

publish (some of) their research results even before patenting, thus avoiding too long a publication 

delay. This association between patenting and publishing in the short run is in line with findings by 

Azoulay et al. (2004) and Markiewitz and DiMinin (2004). Contrarily to the latter, however, we do 

not find evidence of a weaker publishing-patenting association for business-owned patents as 

opposed to university-owned ones. 

Scientific collaboration with industry, in the form of co-authored papers, affect the probability to 

patent with Business companies, possibly as a result of the same research from which the co-

authored papers emerge. Academic fields such as Biology and Pharmaceutical, whose research 

results are more directly exploitable by industry, are those for which the effect is stronger. This 

results is in line with the broader literature on the importance of university-industry scientific 

partnership in the Pharmaceutical industry, and more generally in the science-based technology fields 

(Cockburn and Henderson, 1998).  

Further research is needed to confirm and extend the results obtained so far. More accurate 

information on the CVs of both academic inventors and their colleagues is needed (especially on the 

level of their post-graduate education), as well measures of prestige and productivity at the 

department level. While common and easily available in the US, these data have to built from scratch 

from Italy (some attempts to build a general database have been under way by initiative of the 

Conference of Italian Universities� Rectors, but no longitudinal data are available).  
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If further work with richer data will confirm the results obtained so far, we will have proven that 

even in a weak system of innovation such as Italy, academic patenting is a non-negligible 

phenomenon, which does not occur to the immediate detriment of research. It remains to be seen 

whether academic inventors� research results, being protected by patents, are less likely to serve as 

the basis to further research by other scientists, who may be put off by the risk of infringement or the 

licensing costs (see footnote 3).  



 19

References 

Agrawal A., Henderson R. (2002), �Putting Patents in Context: Exploring Knowledge Transfer from 
MIT�, Management Science 48, pp. 44-60 

AUTM (2003),  Licensing Survey 2003, Association of University Technology Managers, 
Northbrook IL  

Azoulay P., Ding W., Stuart T.(2004), �The Effect of Academic Patenting on (Public) Research 
Output�, paper presented at the NBER Summer Institute: Academic Science and 
Entrepreneurship: Dual Engines of Growth?, 23 July, Cambridge MA 

Balconi M., Borghini S., Moisello A. (2003), �Ivory Tower vs Spanning University: il caso 
dell�Università di Pavia�, in Bonaccorsi A. (ed.), Il sistema della ricerca pubblica in Italia, 
Franco Angeli 

Balconi M., Breschi S., Lissoni F. (2004) �Networks of inventors and the role of academia: an 
exploration of Italian patent data� , Research Policy 33, pp. 127-145 

Bok D. (2003), �Universities in the Marketplace�, Princeton University Press. 

Breschi S., Lissoni F., Montobbio F. (2004), �Open Science and University Patenting: A 
Bibliometric Analysis of the Italian Case�, paper presented at the 4th EPIP Conference on 
European Policy and Intellectual Property, Paris Dauphine University, Paris, France, 1-2 
October 2004. 

Campbell E.G. et al. (2002), �Data Witholding in Academic Genetics: Evidence From a National 
Survey�, Journal of the American Medical Association 287, pp. 473-480 

Chartier R. (2003), �Foucault�s Chiasmus. Authorship between Science and Literature in the 
Seventeenth and Eighteenth Centuries� in: Biagioli M., Galison P. (eds), Scientific Authorship, 
Routdlege  

Cockburn I.M., Henderson R.M. (1998), �Absorptive capacity, coauthoring behavior, and the 
organization of research in drug discovery�, Journal of Industrial Economics XLVI, pp.157-182 

Cohen W.M, Nelson R.R, Walsh J.P. (2000), �Protecting Their Intellectual Assets: Appropriability 
Conditions and Why U.S. Manufacturing Firms Patent (or Not), NBER Working Paper w7552, 
February 

Dasgupta P., David P.A. (1994), �Toward a New Economics of Science�, Research Policy 23, pp. 
487-521 

Dosi G., Llerena P.,  Sylos-Labini M. (2005) �Science-Technology-Industry Links and the 
�European Paradox�: Some Notes on the Dynamics of Scientific and Technological Research in 
Europe�,  LEM Papers Series 2005/02, Scuola Superiore Sant�Anna, Pisa 

Hamilton K.S. (2003), Subfield and Level Classification of Journals, CHI No. 2012-R, CHI Research 
Inc. 

Heller M. A., Eisenberg R.S. (1998), �Can Patents Deter Innovation? The Anticommons in 
Biomedical Research�, Science 280 (May)  pp. 698-701 



 20

Hicks D.M., S.J. Katz, (1996), �Where is Science Going?�, Science, Technology and Human Values 
21, pp. 379-406. 

Iversen E.J., Kaloudis A. (1999), �The changing role of patents and publishing in basic and applied 
modes of organised research�, STEP Report series 1999/06 

Jensen R.,Thursby M. (2001), �Proofs and Prototypes for Sale: The Licensing of University 
Inventions�, American Economic Review 91/1, pp.240-258 

K4I (2005), EP-INV dataset, http://www.k4i.it 

Kalbfleisch, J.D., Prentice R.L. (2002), The Statistical Analysis of Failure Time Data, John Wiley & 
Sons, New York 

Kneller R. (2001), �Technology Transfer: A Review for Biomedical Researchers�, Clinical Cancer 
Research 7, pp. 761-774 

Long J. S., Allison  P. D., McGinnis R. (1993), �Rank Advancement in Academic Careers: Sex 
Differences and the Effects of Productivity�, American Sociological Review 58, pp. 703-722. 

MacLeod C. (2002), Inventing the Industrial Revolution: The English Patent System 1660-1800,  
Cambridge University Press 

Mansfield E. (1995), Academic research underlying industrial innovations: sources, characteristics, 
and financing Review of Economics and Statistics 77, pp. 55-65  

Mansfield E. (1998), �Academic research and industrial innovation: An update of empirical 
findings�,  Research Policy  26, pp. 773-776  

Markiewicz K.R., Di Minin A. (2004), �Commercializing the Laboratory: The Relationship Between 
Faculty Patenting and Publishing�, Econ 222 / PHDBA 297-T:  Seminar On Innovation, Haas 
School of Business 

Merton R.K. (1973), �The Normative Structure of Science�, in: Storer N. W. (ed.), The sociology of 
science: Theoretical and empirical investigations, University of Chicago Press 

Meyer M., 2003. Academics patents as an indicator of useful research? A new approach to measure 
academic inventiveness. Research Evaluation, vol 12, numero 1, pg 17-27. 

Meyer M., Sinilainen T., Utecht J.T., 2003. Toward hybrid Triple Helix Indicators: A study of 
university-related patents and a survey of academic inventors. Scientometrics, vol 58, pg 321-
350. 

Mowery D., Nelson R.R., Sampat B. N., Ziedonis A. (2004), Ivory Tower and Industrial Innovation: 
University-Industry Technology Transfer Before and After the Bayh-Dole Act in the United 
States, Stanford University Press  

Murray F., Stern S. (2004), �Do Formal Intellectual Property Rights Hinder the Free Flow of 
Scientific Knowledge? Evidence from Patent-Paper Pairs�, paper presented at the NBER 
Summer Institute: Academic Science and Entrepreneurship: Dual Engines of Growth?, 23 July, 
Cambridge MA 

OECD (2003), Turning Science into Business: Patenting and Licensing at Public Research 
Organisations, OECD, Paris 



 21

Rosenberg N. (1982), �How exogenous is science?� in: Inside the Black Box, Cambridge University 
Press 

Sampat B.N. (2004), �Genomic Patenting by Academic Researchers: Bad for Science?�, mimeo 
(http://mgt.gatech.edu/news_room/news/2004/reer/)  

Saragossi S., van Pottelsberghe de la Potterie B. (2003), �What Patent Data Reveal about 
Universities: The Case of Belgium�, Journal of Technology Transfer 28, pp. 9-15 

Siegel D. S., Waldman D., Link A. (2003), �Assessing the impact of organizational practices on the 
relative productivity of university technology transfer offices: an exploratory study�, Research 
Policy 32, pp. 27-48  

Stephan P.A., Gurmu S., Sumell A.J., Black G. (2004) �Who�s patenting in the University? Evidence 
from the Survey of Doctorare Recipients�, paper presented at the workshop on The empirical 
economic analysis of the academic sphere, BETA - Université Louis Pasteur, Strasbourg, March 
17th  

 



 22

APPENDIX 
 
 
 
 

Table 1. Italian university professors in 2000, selected fields  

Field 
Professors, active 

in 2000 
of which: Academic 
inventors, n. and (%)

Chemical eng. & Materials tech. 355 66 (18,5) 

Pharmacology 613 84 (13,7) 

Biology 1359 78 (5,7) 

Electronics & Telecom 630 73 (11,6) 

Total 2957 301 (10,2) 
Source: EP-INV-DOC database 

 

 

Table 2. Distribution (%) of academic inventors by n. of patents and field 
 n. of patents  
Fields 1 2-5 6+  

Chemical eng. & Materials tech. 60,9 32,8 6,3 100 

Pharmacology 63,1 28,6 8,3 100 

Biology 70,5 23,1 6,4 100 

Electronics&Telecom 56,2 31,5 12,3 100 

Total 62,9 28,8 8,3 100 
source: EP-INV-DOC database 

 

 

Table 3. Ownership of academic inventors� patents§ by type of applicant and field; n. of 
patents (and %) 

  Business Open Science 1 Individuals 2 

Chemical eng. &  Materials tech. 127 (76,0) 22 (13,2) 18 (10,8) 

Pharmacology 200 (75,2) 32 (12,0) 34 (12,8) 

Biology 88 (48,6) 57 (31,5) 36 (19,9) 

Electronics&Telecom 200 (78,1) 40 (15,6) 16 (6,3) 

Total 615 (70,7) 151 (17,4) 104 (11,9) 
 1 Universities, public labs and government agencies; both Italian and foreign.  
2  Same applicant�s and inventors� names. 
§ Patents  owned by more than one applicant were counted more than once. 
source: EP-INV-DOC database 
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Figure 1 - Distribution of publications per year, academic inventors vs controls; 1980-1999 
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Table 4. Publications per year, inventors vs controls, 1975-2003; by field 

 N Mean Std Median 

Inventors     

Chem.eng. & Materials tech. ** 63 2,0 1,75 1,5 

Pharmacology * 83 2,2 1,21 2,0 

Biology * 78 2,5 2,10 2,0 

Electronic&Telecom * 72 1,7 1,04 1,4 

All Fields 296 2,1 1,60 1,8 

Controls     

Chem.eng. & Materials tech.  63 1,3 1,10 1,1 

Pharmacology  83 1,7 1,11 1,6 

Biology 78 1,8 1,27 1,5 

Electronics&Telecom  72 1,3 1,18 1,0 

All Fields 296 1,6 1,28 1,3 
* - ** Inventor-control distribution difference significant at .90 - .95 (Kolmogorov-Smirnov test) 
(1)  Only professor aged 24-70 in current years 
source: elaborations on EP-INV-DOC database and ISI Science Citation Index 
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Table 5. Descriptive analysis 

Name Description Obs. Mean Std. Dev. Min Max 

DELTA_PUB j,t 

Difference between the yearly scientific 
production of a professors and his current 
Avg_Pub value 14538 .5121545 1.910365 -22 38.8 

AVG_PUB j,t 

 
Average number of publications at each point in 
time 14855 1.411994 1.388881 0 24 

DELTA_BASICj,t 

Difference between the yearly scientific 
production (basic science) of a professors and his 
current Avg_Pub value 14538  .3622659 1.485924 -8 23.16 

AVG_BASIC j,t 

 
Average number of publications (basic science) 
at each point in time 14855   1.007724  1.15956   0 13.68966

AGE j,t Age of professors j at any time (time-variant) 14855 42.66254 10.71546    22 77 

GENDER j. 

  
 
Dummy variable equals 1 for woman professors  14855 .2098283 .4071997 0 1 

SHAREINV j,t 

   
 
Share of academic inventors over the total 
number of a professor�s department colleagues 14855  9.294453 11.02468   0   100 

CUMPATUNI j,t 
 Measures the stock of patents held by each 
professor�s university at each point time 14855  43.90596 53.75198 0 226 

NUNI j. 

 
n. of professors  in hard science in university j in 
year 2000 14855  893.599 520.2939 18   2128 

USSDW j. 

 
n. of professors in university j/n. of professors in 
Italy, by field 14855  5.59148 4.110059 .3424658 33.33333

SSDUW j. 

   
n. of professors in a given field in university j/n. 
of professors in university j, for each field 14855  2.103362 1.987298   .1104972 15.04425
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Table 6 First patent (single event) � Estimated coefficients of the proportional hazard function (Cox  model) 
 (1) (2) (3) 

DELTA_PUBt 
-0,01 

(0,936) 
-0,01 

(0,028) 
 

DELTA_PUBt-1 
0,10 

      (0,035)*** 
0,10 

      (0,035)*** 
 

AVG_PUBt 
0,11 

    (0,052)** 
0,12 

    (0,051)*** 
 

DELTA_BASICt   
0,03 

(0,038) 

DELTA1_BASIC t-1   
0,10 

(0,039)*** 

AVG_BASIC t   
0,09 

(0,059) 

AGE t 
-0,08 
(0,09) 

-0,08 
(0,009) 

-0,01 
(0,312) 

GENDER 
-0,28 

   (0,166)* 
-0,27 

   (0,160)* 
-0,31 

(0,160)* 

S_COPAT t 
2,54 

      (0,407)*** 
3,51 

      (0,273)*** 
3,43 

(0,271)*** 

S_COPAT t*DELEC  
-1,00 

     (0,443)** 
-0,70 

(0,427) 

S_COPAT t *DCHEM  
-8,52 

  (4,042)* 
-8,03 

(4,769)* 

S_COPAT t *DBIOL  
-1,38 

   (0,746)* 
-1,30 

(0,735)* 

SHAREINV 
0,03 

      (0,009)*** 
0,03 

      (0,008)*** 
0,03 

(0,008)*** 

CUMPATUNI t 
0,001 

(0,002) 
0,0001 
(0,002) 

0,0007 
(0,001) 

NUNI t 
0,001 

(0,0001) 
-0,0001 
(0,0001) 

-0,0001 
(0,0001) 

USSDW t 
0,02 

(0,020) 
0,02 

(0,018) 
0,03 

(0,019) 

SSDUW t 
0,009 

(0,032) 
0,001 

(0,031) 
0,004 

(0,031) 

ELECTRONICS dummy 
-0,01 

(0,173)  
 

CHEMICAL dummy 
-0,14 

(0,200)   

BIOLOGY dummy 
-0,02 

(0,164)   
Wald chi-sq 79,74 351,66 353,66 
Log-likelihood -1755,99 -1755,99 -1754,42 

*** 99% sign  ** 95%  * 90% 
Breslow method for ties / Std errors adjusted for clustering on inventor 
Obs. 9855 (592 subjects; 296 events) 
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Table 7 First patent (single event) � Estimated coefficients of the proportional hazard function (Cox  model),  by 
applicant type 

 Business company (1) Open Science institution (2) 
 (1) (2) (3) (4) 

DELTA_PUB 
-0,02 

(0,041)  
-0,06 

(0,059)  

DELTA1_PUB 
0,07 

(0,040)*  
0,11 

  (0,055)*  

AVG_PUB 
0,15 

(0,052)**  
0,14 

  (0,077)*  

DELTA_BASIC  
0,02 

(0,044)  
0,04 

(0,068) 

DELTA1_BASIC  
0,07 

(0,047)  
0,13 

      (0,056)*** 

AVG_BASIC  
0,13 

  (0,070)*  
0,09 

(0,090) 

AGE t 
-0,01 

(0,010) 
-0,01 

(0,011) 
0,11 

(0,016) 
0,10 

(0,016) 

GENDER 
-0,56 

      (0,189)*** 
-0,60 

       (0,189)*** 
0,20 

(0,265) 
0,18 

(0,265) 

S_COPAT t 
4,19 

      (0,304)*** 
4,11 

       (0,304)*** 
0,97 

(0,761) 
0,92 

(0,768) 

S_COPAT t*DELEC 
-1,36 

      (0,436)*** 
-1,09 

    (0,434)**   

S_COPAT t *DCHEM 
-7,98 

  (4,336)* 
7,52 

 (4,56)*   

S_COPAT t *DBIOL 
-1,65 

    (0,784)** 
-1,60 

    (0,776)**   

POSTPAT  
-0,40 

(0,317) 
-0,38 

(0,317) 
-0,28 

(0,304) 
-0,22 

(0,302) 

SHAREINV 
0,03 

       (0,008)*** 
0,03 

      (0,008)*** 
0,02 

(0,011) 
0,02 

(0,010) 

CUMPATUNI  
0,001 

(0,002) 
0,001 

(0,001) 
-0,0009 
(0,003) 

-0,0009 
(0,003) 

NUNI  
-0,0003 
(0,0002) 

-0,003 
(0,0002) 

0,0002 
(0,000) 

0,0002 
(0,0002) 

USSDW  
0,03 

(0,020) 
0,02 

(0,020) 
-0,04 

(0,032) 
-0,02 

(0,033) 

SSDUW  
-0,04 

(0,034) 
-0,04 

(0,035) 
0,04 

(0,047) 
0,04 

(0,047) 

DELEC   
0,45 

(0,334) 
0,58 

(0,342) 

DCHEM   
0,12 

(0,432) 
0,21 

(0,445) 

DBIOL   
0,87 

(0,293)*** 
0,88 

(0,290)*** 
Wald chi-sq 279,61 368,90 77,81 78,52 
Log-likelihood -1288,30 -1397,17 -572,41 -571,79 

*** 99% sign  ** 95%  * 90%; Breslow method for ties / Std errors adjusted for clustering on inventor 
(1) Obs. 10650 (592 subjects; 235 events); (2) Obs. 10650 (592 subjects;  94 events, including INDIVIDUAL patents)  
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Table 8 All patents (multiple events) � Estimated coefficients of the proportional hazard function (Cox  model),  
by applicant type 

 All applicants (1)  Business companies (2)  Open Science inst.(3) 

DELTA_PUB 
0,02 

(0,022) 
-0,01 

(0,025) 
0,06 

(0,037) 

DELTA1_PUB 
0,05 

    (0,022)** 
0,02 

(0,025) 
0,08 

  (0,038)** 

AVG_PUB 
0,14 

     (0,037)*** 
0,15 

    (0,046)*** 
0,31 

    (0,111)*** 

AGE  
-0,01 

(0,006) 
-0,01 

(0,008) 
-0,01 

(0,015) 

GENDER 
-0,39 

     (0,145)*** 
-0,71 

    (0,194)*** 
0,27 

(0,361) 

S_COPAT_ 
0,54 

(0,804) 
-0,29 

(0,972) 
-0,47 

(1,316) 

S_COPAT_ELEC 
-1,98 

  (1,107)* 
-3,16 

    (1,215)***  

S_COPAT _CHEM 
1,98 

     (0,672)*** 
2,73 

    (0,810)***  

S_COPAT_BIOL 
-0,02 

(0,916) 
-0,56 

(1,108)  

STOCKPAT 
0,03 

   (0,015)** 
0,02 

(0,016) 
0,07 

   (0,034)** 

SHAREINV 
0,02 

    (0,004)*** 
0,03 

    (0,005)*** 
0,02 

(0,010) 

CUMPATUNI  
0,003 

  (0,001)** 
0,00 

  (0,001)** 
0,00 

(0,003) 

NUNI  
-0,0001 
(0,000) 

-0,0003 
 (0,000)* 

0,0007 
   (0,000)** 

USSDW 
0,01 

(0,013) 
0,03 

 (0,017)* 
-0,05 

(0,047) 

SSDUW  
-0,03 

(0,030) 
-0,07 

 (0,040)* 
0,03 

(0,081) 

DELEC   
0,24 

(0,498) 

DCHEM   
-0,14 

(0,468) 

DBIOL   
0,45 

(0,499) 

Theta 
0,36 

       (0,141)*** 
1,06 

      (0,258)*** 
6,42 

       (1,448)*** 
Wald chi-sq 190,86 137,73 57,38 
Log-likelihood 3494,5334 -2926,0318 -968,62769 
N. of subjects 1143 1144 1147 
N. of failures 561 472 163 
N. of obs. 11482 11482 11482 
N. of groups 592 592 592 

*** 99% sign  ** 95%  * 90% 
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Table 9. All patents (multiple events) � Estimated coefficients of the 

proportional hazard function (Cox  model); inventors only 

DELTA_PUB 
0,05 

   (0,025)** 

DELTA1_PUB 
0,01 

(0,028) 

AVG_PUB 
0,07 

    (0,030)** 

S_COPAT_ 
4,56 

     (1,571)*** 

S_COPAT_ELEC 
-2,99 

  (1,623)* 

S_COPAT _CHEM 
-6,49 

  (3,916)* 

S_COPAT_FARM 
-4,35 

    (1,771)** 

PHD 
0,86 

      (0,207)*** 

PHDELEC 
-0,81 

     (0,391)** 

PHDCHEM 
-1,04 

       (0,399)*** 

PHDFARM 
-0,86 

    (0,384)** 

AGE  
0,00 

(0,011) 

GENDER 
-0,21 

(0,179) 

L1STOCKPAT 
0,04 

(0,028) 

SHAREINV 
0,02 

      (0,004)*** 

CUMPATUNI  
-0,00001 
(0,002) 

NUNI  
0,00001 
(0,0003) 

USSDW 
0,02 

(0,021) 

SSDUW  
-0,03 

(0,049) 

DELEC 
0,74 

      (0,214)*** 

DCHEM 
0,28 

(0,259) 

DFARM 
0,51 

    (0,216)** 
Wald chi2(22) 219,56 
Log pseudo-likelihood -1234,8218 
N. of subjects 384 
N. of failures 254 
N. of obs. 2541 

*** 99% sign  ** 95%  * 90% 
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Table A1. Disciplines (SSD) and fields; conversion table 
Bio-chemistry (E05A) Biology 
Molecular biology (E05B) Biology 
Applied biology (E06X) Biology 
Human physiology (E04B) Biology 
Materials science and technology (I14A) Chemical engineering & Materials technology 
Macromolecular compounds (I14B) Chemical engineering & Materials technology 
Applied physics-chemistry (I15A) Chemical engineering & Materials technology 
Chemical engineering (I15B) Chemical engineering & Materials technology 
Industrial chemistry (I15E) Chemical engineering & Materials technology 
Electronics (K01X) Electronics&Telecommunications 
Electromagnetic fields  (K02X) Electronics&Telecommunications 
Telecommunications  (K03X) Electronics&Telecommunications 
Pharmaceutical Chemistry (C07X) Pharmacology 
Applied Pharmacology  (C08X) Pharmacology 
 
 
 

Table A2. Institutional and personal variables, inventor vs. control sample year 2000 

 University size 1 
Weight of the discipline 

in the univ. 2 
University weight in the 

discipline 3 

 Controls Inventors Controls Inventors Controls Inventors 

Chemical eng. & Materials tech. 909 * 784 1,2 1,5 * 8,9 8,9 

Pharmacology 947 * 910 2,0 2,1 4,9 * 4,6 

Biology 896 * 869 2,6 3.0 * 3,9 4,0 * 

Electronics&Telecom 834 939 * 2,7 * 2,0 5,2 5,7 * 

All fields 898 * 879 2,0 2,2 * 5,5 5,6 * 
1 n. of professors in the university (all scientific discipline); avg values 
2 n. of professors in the discipline in the univ. / n. of professors in the university (%); avg values 
3 n. of professors in the discipline in the univ. / n. of professors in the discipline, all Italian univ. (%); avg values  
* Mean value significantly higher at .90 (t test) 
source: elaborations on EP-INV database and ISI Science Citation Index 

 

 

 
Table A3. Personal variables, inventor vs. control sample year 2000 

 Gender 1 Age2 
 Controls Inventors Controls Inventors 
Chemical eng. & Materials tech. 14 (22,2%) 9 (14,3%) 51.55 51.60 
Pharmacology 32 (38,6%) 27 (32,5%) 51.84 51.26 
Biology 29 (37,2%) 20 (25,6%) 50.83 50.79 
Electronics&Telecom 5  (6,9%) 2  (2,8%) 47.77 47.95 
All fields 80 (27,0%) 58 (19,6%) 50.52 50.40 

1 n. of females (and % of total professors in the discipline) 
2 avg values 
source: elaborations on EP-INV database and ISI Science Citation Index 
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Table A4. Top applicants of patents by academic inventors and patent 
concentration index, by field 

Field/Applicant 
n. of 

patents 
% over 

field 

Chemical eng. & Materials technology 
ENI Group 34 21,1
Montedison Group 16 9,9
Novartis AG 9 5,6
CNR (National Research Council) 9 5,6
Sisas Spa 8 5,0

Herfindhal index (1-100)  6,91

Pharmacology 
Mediolanum Farmaceutici 19 8,4
SkyePharma PLC 17 7,5
Pfizer 14 6,2
CNR (National Research Council) 11 4,8
Lisapharma 8 3,5

Herfindhal index (1-100)  2,96

Biology 
Istituto Angeletti 13 7,8
CNR (National Research Council) 11 6,6
MIUR (Ministry of Education & Research) 6 3,6

Herfindhal index (1-100)  2,13

Electronics&Telecom   
ST Microelectronics  91 37,4 
Optical Technologies 14 5,8 
Selenia industrie elettroniche 12 4,9 
Siemens AG 12 4,9 
Universita degli studi di Roma �La Sapienza� 11 4,5 

Herfindhal index (1-100)   15,55
NB. Patents owned by more than one applicant were counted more than once; total number of patents in 

this table >  actual  total number 
source: EP-INV database 

 


